# MaxPlusII – Symulacja projektu

Oprogramowanie MaxPlusII i Quartus umożliwia weryfikację projektu układu umieszczanego w FPLD. Przykładowe postępowanie podczas symulowania projektu zostanie pokazane na przykładzie prostego układu, którego schemat pokazano poniżej.

#### Przykładowy schemat

| 1.0 V        | AAX+plı  | us II - z:\altera\a | altera       |                     |           |        |      |             |      |              |               |      |
|--------------|----------|---------------------|--------------|---------------------|-----------|--------|------|-------------|------|--------------|---------------|------|
| MAX          | +plus II | File Edit View      | Symbol Assig | in Utilities        | Options N | Window | Help |             |      |              |               |      |
|              | 2 🖬 🧉    | 3 X B 🔁 🕫           | N? 🛆 🗟 🖻     | 8 🖄 🚜               | à a à     |        |      | 🚰 🖀 🗛 Arial | • 12 | •            |               | 4 Bt |
|              | 😹 alte   | era. gdf - Graphi   | c Editor     |                     |           |        |      |             |      |              |               |      |
| A            |          |                     |              |                     |           |        |      |             |      |              |               |      |
| $\mathbf{N}$ |          |                     |              |                     |           | _      | 400  | ount        |      |              |               |      |
| 7            | 32       | LOAD                | $\square$    | <u>INPUT</u><br>VCC |           | d      | LDN  |             |      |              |               |      |
|              | 33       | D0                  | $\square$    | <u>INPUT</u><br>VCC |           |        | A    |             |      |              |               |      |
| Q            | 34       | D1                  | $\square$    |                     |           |        | В    | QA          |      | OUTPUT<br>42 | -             | WY0  |
| E            | 35       | D2                  | $\square$    | INPUT<br>VCC        |           |        | С    | QB          |      | OUTPUT<br>43 | $-\Box$       | WY1  |
| +-           | 36       | D3                  | $\square$    | INPUT<br>VCC        |           |        | D    | QC          |      | OUTPUT<br>44 | -             | WY2  |
| **•          | 37       | CIN                 | $\square$    | INPUT<br>VCC        |           |        | CIN  | QD          |      | OUTPUT<br>45 | -             | WY3  |
|              | 38       | D/U                 | $\square$    | INPUT<br>VCC        |           |        | DNUP | COUT        |      | OUTPUT<br>46 | $\neg \Box >$ | CAR  |
|              | 39       | PR                  | $\square$    | INPUT<br>VCC        |           | d      | SETN |             |      |              |               |      |
|              | 40       | CLR                 | $\square$    | INPUT<br>VCC        |           | d      | CLRN |             |      |              |               |      |
|              | 41       | СК                  | $\square$    | INPUT<br>VCC        |           |        | CLK  |             |      |              |               |      |
|              |          |                     |              |                     |           | 31     | COU  | NTER        |      |              |               |      |
|              |          |                     |              |                     |           |        |      |             |      |              |               |      |

Symulowany będzie układ reprezentowany przez symbol 4count z biblioteki mf.

## Kompilacja projektu

Jeżeli celem symulacji jest zweryfikowanie projektu w docelowym układzie proces kompilacji należy poprzedzić wyborem tego układu (problem ten omówiono w **SML3\_ALTERA-konfg.pdf**).

Moduł kompilacji programu MaxPlusII można wywołać na wiele sposobów np. wciskając klawisze **Ctrl+L** lub wybrać w menu *Max+plus II* funkcję *Compiler*. Symulacji można poddać bezbłędny projekt a zatem po wystąpieniu błędu należy odczytać komunikaty błędów.



Wciskając na odpowiednią strzałkę w przycisku "Message" można przesuwać się na liście błędów a po wciśnięciu przycisku "Locate" edytor schematów (bądź tekstu gdy projekt jest opisany w AHDL) wskaże miejsce błędu.

#### Przygotowanie pliku z opisem symulacji

Opis symulacji rozpoczyna się od wyboru w środowisku MaxPlusII edytora przebiegów czasowych z menu *Max+PlusII* funkcja *Waveform Editor* lub w menu *File* należy wybrać opcję *New...* wskazując **Waveform Editor File** i rozszerzene **scf**. Po otwarciu okienka "Untitled1 – Waveform Editor" można rozpocząć opis projektu.

W okienku tym projektant musi wymienić sygnały wyjściowe, które chce obserwować oraz wszystkie sygnały wejściowe, które mają wpływ na nie.



Symulowane sygnały umieszczane są w kolumnie "Name". Aby wskazać je należy wybrać w menu *Node* funkcję *Insert Node* albo umieścić kursor w kolumnie Name i dwukrotnie wcisnąć lewy przycisk myszki.

Po otwarciu okienka "Insert Node" można w pole "Node Name" wpisać nazwę sygnału lub po wciśnięciu przycisku ekranowego "List" wybrać go z listy "Node& Groups from SNF". Typ sygnału zostanie określony automatycznie a w przypadku sygnału wejściowego można przypisać mu wartość domniemaną.

Znaczniki umieszczone w obszarze "Type" pozwalają wskazać typ sygnałów, które mają być wyświetlane w "Node& Groups from SNF".

Gdy tak jak na rysunku obok interesujący nas sygnał nie jest wyprowadzony na końcówkę układu

| altera.gdf - Graphic Editor                  |                             |                          |                   | <u> </u> |
|----------------------------------------------|-----------------------------|--------------------------|-------------------|----------|
|                                              | 4count                      |                          |                   | <b>^</b> |
|                                              |                             |                          |                   |          |
|                                              | A                           |                          |                   |          |
|                                              | B QA                        |                          |                   |          |
|                                              | C QB                        |                          | $\rightarrow$ WY1 |          |
|                                              | D QC                        | 📸 altera. scf - Waveform |                   |          |
|                                              |                             | Ref. 0.0ns               | Interval:         |          |
|                                              | DNUP COUT                   |                          | 1                 | 0        |
|                                              | G SETN                      | Name: Value:             |                   |          |
|                                              |                             | PR 1                     |                   |          |
|                                              | CLK                         | CLR 1                    |                   | -        |
| VCC                                          | 31 COUNTER                  | Den CIN 1                | -                 |          |
|                                              | 01                          | I LOAD 1                 |                   |          |
| Insert Node                                  | <b>と</b>                    | 🖸 📷 D/U 0                |                   |          |
| Node Name:  4count 31 QA.Q                   |                             | D3 0                     |                   |          |
| Default Value: 0                             |                             | D2 0                     |                   |          |
|                                              | C Output Pin Cancel         | D1 0                     |                   |          |
|                                              | Buried Node                 |                          |                   | w later  |
|                                              |                             | - иуга от но             |                   | 2 13     |
| For Simulator Char                           | inel File (SCF) Only        | 1 - WY3 0                |                   |          |
| Nodes & Groups from SNE                      |                             |                          |                   |          |
| [4count 31]QC.CLRN (B)                       | Type                        |                          |                   |          |
| 4count31 QC.CLK (B)<br> 4count31 QB.Q (B)    | ✓ Inputs ✓ Registered       |                          |                   |          |
| 4count31 QB.PRN (B)<br> 4count31 QB.D (B)    | Group Memory Bit            |                          |                   |          |
| 4count31 QB.CLRN (B)<br> 4count31 QB.CLK (B) | All Memory Word             | <                        | 1                 | >        |
| 4count 31 OA Q (B)<br>4count 31 OA PRN (B)   |                             |                          |                   |          |
| 4count31 QA.D (B)                            | Show All Node Name Synonyms |                          |                   |          |

FPLD można go użyć do symulacji projektu odszu-kując na liście "Node & Groups from SNF" (po uprzednim wskazaniu w polu "Type" opcji All) węzła opisanego w sposób

## " | xxxxx.yyy | zzzz (K)"

gdzie **xxxxx** to nazwa bloku nad jego symbolem, **yyy** to numer referencyjny bloku na schemacie (z lewej strony pod blokiem), **zzzz** oznacza nazwę wyprowadzenia bloku a **K** kierunek transmisji sygnału. Po umieszczeniu wszystkich sygnałów koniecznych do symulacji danego projektu lub jego fragmentu <u>należy wyznaczyć czas trwania symulacji</u>. W tym celu należy wybrać w menu *File* funkcję *End Time...* i pojawiającym się okienku należy wpisać czas odpowiadający żądanej liczbie cykli symulacji pomnożonej przez 50 ns (dwukrotna szerokość siatki symulacji odpowiadającą taktowi zegara synchronizującego układ FPLd – 20 MHz).



Kolejnym etapem iest przypisanie wartości zmiennym wejściowym. Należy zacząć od sygnału taktującego. Po wskazaniu kursorem wartości w kolumnie "Value" odpowiadajacej CK należv wcisnąć prawy przycisk myszki i wybrać opcje Overwrite a następnie Clock....W poniższym okienku wskazuje się wartość początkową zegara a także co ile siatek w okienku symulacji sygnał ten ma zmienić swój stan na przeciwny.

| nterval: 0.0ns       | To: 2.5us        |
|----------------------|------------------|
| Starting Value: 0    | •                |
| Clock Period: 50.0ns | Multiplied By: 1 |

W podobny sposób można zdefiniować pozostałe sygnały.



Można także wskazać kursorem zakres przebiegu, który ma ulec zmianie i wprowadzić nową wartość ("Insert"), która przesunie prawą część przebiegu o długość wprowadzanej zmiany lub można zamienić starą na nową posługując się opcją "Overwrite" (w tym przypadku będzie dostępna również funkcja "Invert" zamieniająca istniejący stan na przeciwny).

W przypadku sygnałów zgrupowanych można im nadawać wartości liczbowe lub kolejne stany licznika.

| nterval: 150.0  | Ins         | To: 2.5us      |        |
|-----------------|-------------|----------------|--------|
| Radix is: Hexa  | Idecimal    |                |        |
| Starting Value: | 1           |                | ОК     |
| Ending Value:   | E           |                | Cancel |
| Count Type:     | Binary      | Increment By:  | 1      |
|                 | 🕥 Gray Code |                |        |
| Count Every:    | 25.0ns      | Multiplied By: | 1      |

W okienku jak obok można wskazać wartość początkową ("Starting Value"), zwiększaną o wartość wskazaną w polu "Increment By" co określoną w polu "Multiplied By" liczbę siatki. Można również wskazać sposób reprezentowania liczby – binarnie czy w kodzie Gray'a. Zmianie ulegnie tylko wskazany fragment przebiegu.

W kolumnie "Name" pojawił się sygnał grupowy D[3..0], którego elementami są sygnały D3, D2, D1 i D0. Można go wprowadzić wpisując w polu "Node Name" okienka "Insert Node" nazwę **D[3..0]** dzięki czemu uzyska się postać liczbową stanu grupy wejść. Podobnie można postąpić z wyjściami co uczyniono w poniższym przykładzie.



Pokazany zrzut z ekranu powstał w wyniku zasymulowania projektu poprzedzonego zapamiętaniem pliku symulacyjnego jako **altera.scf** gdzie "altera" jest nazwą projektu. <u>Tylko tak nazwany plik</u> <u>będzie użyty do symulacji projektu</u>.



Na pokazanych przebiegach zmieniono kod liczbowy wyświetlanych wartości zmiennej D[3..0] z domniemanej szesnastkowej na dziesiętną. Można to uczynić wskazując wybrany sygnał i dwukrotnie przyciskając lewy przycisk myszki. W otwartym okienku jak obok można dokonać odpowiedniego wyboru.

### Symulacja projektu

Wywołanie symulatora można wykonać na wiele sposobów. W menu *MaxPlusII* można wskazać funkcję *Simulator*. Można wywołać symulator wskazując odpowiednią ikonkę (beczułka z napisem ".snf") w okienku kompilatora jak pokazano poniżej.



Wynik działania symulatora został już wcześniej pokazany. W przypadku wystąpienia błędów w pliku opisującym symulację moduł symulatora programu MaxPlusII wskaże je i należy je usunąć zgodnie z sugestiami symulatora.